Tài nguyên

Hỗ trợ trực tuyến

  • (Lê Phương)

TỪ ĐIỂN ONLINE

Tra Từ Điển

Liên kết giáo dục

TIN TỨC THẾ GIỚI

Online

0 khách và 0 thành viên

Thống kê

  • truy cập   (chi tiết)
    trong hôm nay
  • lượt xem
    trong hôm nay
  • thành viên
  • Chatbox

    Open Cbox
    Gốc > Lịch sử toán học >

    Người giải bài toán Fermat: Andrew Wiles

    Andrew Wiles đã cống hiến phần lớn sự nghiệp của ông cho việc chứng minh định lý Fermat cuối cùng (Fermat's Last Theorem - viết tắt là FLT), bài toán nổi tiếng nhất thế giới. Vào năm 1993, ông đã trở nên nổi tiếng khi công bố một cách chứng minh bài toán, nhưng câu chuyện chưa chấm dứt ở đó; một lỗi sai trong tính toán đã làm lung lay công trình cả đời của ông. Andrew Wiles đã nói chuyện với NOVA và kể lại cách ông đã xử lý chỗ sai lầm, và cuối cùng tiến tới để đạt được hoài bão của đời ông như thế nào.

    NOVA: Nhiều khám phá khoa học vĩ đại là kết quả của sự ám ảnh, nhưng trong trường hợp của ông, nỗi ám ảnh đó đã bám lấy ông từ lúc ông còn là một đứa bé.

    ANDREW WILES: Tôi lớn lên ở Cambridge, Anh quốc, và tình yêu toán học của tôi đã chớm từ những ngày đầu của thời thơ ấu. Tôi yêu thích giải toán ở trường. Tôi thường đem bài về nhà và tự nghĩ ra những đề bài mới. Nhưng bài toán hay nhất mà tôi đã từng tìm thấy, tôi tìm thấy trong thư viện công cộng trong vùng. Tôi lúc đó chỉ đang xem lướt qua khu vực để các sách toán và tôi tìm thấy một cuốn sách này, toàn bộ nói về một bài toán mà thôi -- Định lý Fermat cuối cùng. Các nhà toán học đã không giải được bài toán này trong 300 năm. Nhìn qua, nó rất đơn giản, vậy mà tất cả các nhà toán học vĩ đại trong lịch sử đã không thể giải được. Đó là một bài toán, mà tôi, một đứa bé 10 tuổi, đã có thể hiểu và tôi đã biết ngay lúc đó rằng tôi không bao giờ bỏ qua được. Tôi phải giải nó.



    NOVA: Fermat là ai và định lý cuối cùng của ông ta là gì?

    AW: Fermat là một nhà toán học ở thế kỷ 17, người đã viết ghi chú bên lề cuốn sách của ông đưa ra một mệnh đề cụ thể và khẳng định rằng đã chứng minh được. Mệnh đề của ông nói về một phương trình liên quan rất gần với phương trình Pythagoras. Phương trình Pythagoras cho ta:



    NOVA: Ông đã bắng đầu tìm kiếm cách chứng minh như thế nào?

    AW: Trong thời niên thiếu, tôi cố gắng giải quyết bài toán theo cách mà tôi nghĩ Fermat có lẽ đã làm. Tôi ước đoán là ông ta không biết quá nhiều toán hơn cậu thiếu niên là tôi. Sau đó tôi vào đại học, tôi nhận ra rằng có nhiều người đã nghĩ về bài toán trong suốt thế kỷ 18 và 19 và vì vậy tôi học các phương pháp đó. Nhưng tôi vẫn chẳng đi tới đâu cả. Rồi khi tôi trở thành nhà nghiên cứu, tôi quyết định là tôi nên gác bài toán đó qua một bên. Không phải là tôi quên nó -- bài toán vẫn luôn còn đó -- nhưng tôi nhận ra là những kỹ thuật sẵn có để giải quyết bài toán đã có từ trong vòng 130 năm nay. Không có vẻ gì là những kỹ thuật đó tiếp cận được cốt lõi của bài toán. Vấn đề khi giải FLT là ở chỗ bạn có thể tốn nhiều năm trời không đi tới đâu. Giải bất cứ bài toán nào cũng tốt, miễn là nó sinh ra những vấn đề toán lý thú kèm theo -- cho dù bạn không giải được nội trong ngày đi nữa. Một bài toán được đánh giá là hay dựa trên các vấn đề toán sinh ra hơn là dựa trên bản thân bài toán.

    NOVA: Có vẻ như FLT đã được coi là không thể giải được, và các nhà toán học không thể mạo hiểm hao phí để rồi không đi tới đâu. Nhưng rồi vào năm 1986 mọi thứ đã thay đổi. Một bước đột phá bởi Ken Ribet ở University of California at Berkeley đã liên kết FLT với một bài toán chưa giải được khác, đó là giả thuyết Taniyama-Shimura (Taniyama-Shimura conjecture). Ông có nhớ đã phản ứng thế nào trước tin này không?

    AW: Đó là một buổi tối cuối mùa hè 1986 khi tôi đang nhấm nháp trà đá (iced tea) ở nhà một người bạn. Trong khi nói chuyện, một cách không chủ ý, người bạn cho tôi hay là Ken Ribet đã chứng minh mối liên hệ giữa Taniyama-Shimura và FLT. Tôi sửng sốt. Ngay lúc đó tôi biết rằng hành trình của đời tôi đã chuyển hướng bởi vì điều đó có nghĩa là để chứng minh FLT, tôi chỉ cần chứng minh giả thuyết Taniyama-Shimura. Điều đó có nghĩa là giấc mơ thời thơ ấu của tôi nay đã là thứ đáng để lao vào. Tôi chỉ biết rằng tôi không thể để điều đó trôi qua.

    NOVA: Vậy là, bởi vì Taniyama-Shimura là một bài toán hiện đại, điều này có nghĩa là giải nó, cũng có nghĩa là cố gắng chứng minh FLT, là việc đáng làm.

    AW: Đúng vậy. Chưa ai có đường hướng để tiếp cận Taniyama-Shimura nhưng ít nhất nó cũng thuộc toán học dòng chính. Tôi có thể thử và chứng minh các kết quả, mà, cho dù chúng không giải quyết được toàn bộ, cũng có giá trị toán học. Vậy là sự lãng mạn của FLT, điều đeo đẳng cả đời tôi, nay đã kết hợp với một bài toán được chấp nhận một cách chuyên nghiệp.



    NOVA: Tại thời điểm đó ông đã quyết định làm việc biệt lập hoàn toàn. Ông đã không nói với bất cứ ai là ông đang tiến hành tìm chứng minh FLT. Tại sao vậy?

    AW: Tôi nhận ra rằng bất cứ điều gì liên quan tới FLT tạo ra quá nhiều sự chú ý. Bạn không thể thật sự chuyên tâm hàng năm trời trừ khi bạn có sự tập trung trọn vẹn, quá nhiều khán giả sẽ phá hủy điều đó.

    NOVA: Nhưng chừng như ông đã nói cho vợ ông biết ông đang làm gì?

    AW: Vợ tôi chỉ quen tôi khi tôi đã đang giải FLT. Tôi nói cho nàng hay trong tuần trăng mật, chỉ vài ngày sau hôn lễ. Vợ tôi đã từng nghe nói tới FLT, nhưng vào lúc đó nàng không biết gì về ý nghĩa lãng mạn của FLT đối với các nhà toán học, rằng nó đã là cái gai trong da thịt chúng tôi nhiều năm đến thế.

    NOVA: Hàng ngày, ông đã xây dựng cách chứng minh của ông như thế nào?

    AW: Tôi thường đến với nghiên cứu của tôi, và bắt đầu cố gắng tìm kiếm các quy luật. Tôi thử làm các tính toán giải thích một vài khía cạnh toán học nhỏ. Tôi cố thử ép bài toán vào những hiểu biết trừu tượng rộng hơn sẵn có trong vài phần của toán học có thể làm cho bài toán đang làm rõ ràng sáng sủa hơn. Đôi khi phải đi tìm trong sách coi thử người ta đã làm như thế nào. Đôi khi là câu hỏi để sửa đổi các thứ đi một chút, làm thêm vài phép toán. Và có lúc tôi nhận ra rằng không có điều gì đã làm trước đây có chút ích lợi nào cả. Vậy rồi tôi phải tìm cái gì hoàn toàn mới; những cái đó tới từ đâu quả là điều bí ẩn. Tôi đem bài toán theo trong đầu hầu như luôn luôn. Tôi có thể nghĩ tới nó đầu tiên khi thức dậy buổi sáng, tôi có thể nghĩ về nó suốt ngày, và tôi có thể đang nghĩ về nó khi đi ngủ. Nếu không bị phân tâm, cùng một thứ có thể xoay tới xoay lui trong trí của tôi. Cách duy nhất để thư giãn là khi tôi cùng với các con. Bọn trẻ đơn giản là chẳng hề quan tâm tới Fermat. Chúng chỉ muốn nghe kể chuyện và sẽ chẳng để bạn làm gì khác.

    NOVA: Thường thường người ta làm việc theo nhóm và được hỗ trợ bởi những người trong nhóm. Ông đã làm gì khi bị bế tắc?

    AW: Khi tôi bị kẹt và không biết phải làm gì tiếp theo, tôi sẽ ra ngoài đi dạo. Tôi thường đi dạo xuống gần hồ. Dạo chơi có một tác dụng rất tốt giúp bạn ở trạng thái thư giãn, nhưng cùng lúc đó cho phép tiềm thức hoạt động. Và thường thường nếu bạn có cái gì đó loé lên trong đầu thì lại không có cái gì để viết hay bàn viết. Tôi luôn có sẵn viết chì và giấy và, nếu tôi thật sự có một ý tưởng, tôi sẽ ngồi xuống một băng ghế và viết vội ra.



    NOVA: Vậy là trong 7 năm trời ông đã theo đuổi chứng minh này. Chắc là có những khi thoái chí xen lẫn với những lúc thành công.

    AW: Có lẽ tôi có thể mô tả tốt nhất kinh nghiệm nghiên cứu toán học của tôi theo hình ảnh của một chuyến hành trình qua một lâu đài tối tăm chưa được thám hiểm. Bạn bước vào căn phòng đầu tiên của tòa nhà và nó tối mịt mùng. Bạn dò dẫm xung quanh vấp đụng vào bàn ghế, nhưng dần dần bạn biết đuợc từng món tủ giường bàn ghế nằm đâu. Cuối cùng, sau 6 tháng hay cỡ đó, bạn tìm ra cái công-tắc đèn, bạn bật lên, và bỗng nhiên mọi thứ đều sáng rõ. Bạn có thể thấy chính xác bạn đang ở chỗ nào. Thế rồi bạn đi vô căn phòng kế tiếp và mất 6 tháng nữa trong bóng tối. Như vậy mỗi một bước đột phá, mặc dù đôi khi chỉ trong thoáng chốc, đôi khi mất một hai ngày, chúng là những đỉnh điểm của -- và không thể tồn tại nếu không có -- thời gian nhiều tháng trời mò mẫm loanh quanh trong bóng tối dẫn tới những đột phá đó.

    NOVA: Và trong suốt 7 năm, ông đã không bao giờ có thể chắc chắn việc tìm được một chứng minh trọn vẹn.

    AW: Tôi thật sự tin rằng tôi đã đi đúng hướng, nhưng điều đó không có nghĩa là tôi nhất thiết có thể đạt được mục đích. Vẫn có thể là các phương pháp cần thiết để tiến hành bước tiếp theo đơn giản là ngoài tầm toán học hiện thời. Cũng có thể các phương pháp tôi cần để hoàn tất chứng minh vẫn chưa được phát minh trong vòng trăm năm nữa. Như vậy cho dù tôi đi đúng hướng chăng nữa, tôi vẫn có thể sinh lầm thế kỷ.

    NOVA: Vậy rồi cuối cùng vào năm 1993, ông đã làm được bước đột phá quyết định.

    AW: Phải, đó là một buổi sáng cuối tháng 5. Vợ tôi, Nada, ở ngoài với bọn trẻ và tôi ngồi nơi bàn làm việc suy nghĩ về bước cuối cùng của chứng minh. Tôi lúc đó đang ngó lướt qua bài nghiên cứu của tôi và có một câu làm tôi chú ý. Câu đó nhắc tới một công trình vào thế kỷ 19, và tôi bỗng nhiên nhận ra là tôi có thể dùng điều đó để hoàn tất chứng minh. Tôi tiếp tục cho tới chiều và tôi quên đi xuống ăn trưa, và vào khoảng 3 hay 4 giờ chiều, tôi đã thật sự tin tưởng là điều đó giải quyết được vấn đề còn lại. Lúc đó vào cữ trà chiều và tôi xuống nhà và Nada rất ngạc nhiên vì tôi xuống trễ vậy. Thế rồi tôi nói với nàng là tôi đã giải được FLT.



    NOVA: Báo New York Times kêu lên "At Last Shout of 'Eureka!' in Age-Old Math Mystery," nhưng họ không biết, và ông cũng chưa biết, đã có chỗ sai trong chứng minh của ông. Chỗ sai đó là gì?

    AW: Đó là chỗ sai trong một phần lý luận quan trọng, nhưng nó tinh tế tới nỗi tôi đã hoàn toàn bỏ sót cho tới lúc đó. Lỗi sai rất trừu tượng khó có thể mô tả bằng cách diễn đạt thông thường. Ngay cả việc giải thích nó cho một nhà toán học cũng đòi hỏi người đó phải bỏ ra hai ba tháng nghiên cứu rất kỹ lưỡng phần đó trong bản thảo.

    NOVA: Cuối cùng, sau một năm làm việc, và sau khi mời nhà toán học Richard Taylor ở Cambridge tới cùng làm việc với ông về chỗ sai, ông đã sửa chữa ổn thoả chứng minh. Mọi người muốn hỏi điều này: chứng minh của ông có giống như chứng minh của Fermat không?

    AW: Không có chút khả năng nào. Fermat không bao giờ có thể có chứng minh này. Nó dài 150 trang. Nó là một chứng minh của thế kỷ 20. Nó không thể được làm thậm chí ở thế kỷ 19, chứ chưa nói là thế kỷ 17. Các kỹ thuật dùng ở đây đơn giản là không hề có ở thời Fermat.

    NOVA: Vậy thì chứng minh nguyên thuỷ của Fermat vẫn còn đâu đó chưa tìm ra.

    AW: Tôi không tin Fermat có cách chứng minh. Tôi nghĩ ông tự dối lòng khi nghĩ rắng ông có cách chứng minh. Nhưng điều làm cho bài toán này đặc biệt đối với dân không chuyên là có một khả năng rất nhỏ rằng thật sự có tồn tại một chứng minh đẹp thời thế kỷ 17.

    NOVA: Như vậy một số nhà toán học sẽ tiếp tục tìm kiếm chứng minh nguyên thuỷ. Còn ông sẽ làm gì tiếp theo?

    AW: Không có bài toán nào sẽ mang cùng ý nghĩa như vậy đối với tôi nữa. Fermat là niềm đam mê thời thơ ấu của tôi. Không gì thay thế được. Tôi sẽ thử các bài toán khác. Tôi chắc rằng một số bài sẽ rất khó và tôi sẽ lại có được cảm giác thành tựu, nhưng không gì sẽ có ý nghĩa như thế nữa. Không có bài toán nào khác có thể bám chặt lấy tôi như bài này. Có cảm giác u sầu. Ta đã mất điều gì đó đã ở bên ta quá lâu, và điều gì đó đã cuốn hút nhiều người vào toán học. Nhưng có lẽ điều đó luôn xảy ra với các bài toán, và ta chỉ phải tìm những bài mới để lôi cuốn sự chú ý của chúng ta. Người ta nói với tôi rằng tôi đã lấy mất bài toán của họ -- tôi có gì khác để trả lại không? Tôi cảm thấy có trách nhiệm. Tôi hy vọng rằng khi nhìn thấy sự phấn khích của việc giải bài toán này sẽ làm cho các nhà toán học trẻ nhận ra rằng có rất nhiều và rất nhiều những bài khác trong toán học cũng sẽ đầy thách thức trong tương lai.

    NOVA: Thách thức chính hiện nay là gì?

    AW: Bài toán lớn nhất đối với các nhà toán học hiện nay có lẽ là Giả Thuyết Riemann (Riemann Hypothesis). Nhưng bài toán này không thể trình bày một cách đơn giản.

    NOVA: Và giờ đây FLT đã được giải quyết, ông có suy nghĩ gì?

    AW: Chắc chắn một điều tôi đã học được là chọn một bài toán dựa trên mức độ quan tâm của bạn rất quan trọng. Dù cho nó có vẻ khó xuyên thủng đến thế nào, nếu bạn không thử làm, thì bạn chẳng bao giờ làm được. Hãy luôn thử làm những bài toán có nhiều ý nghĩa nhất với bạn. Tôi đã có đặc ân hiếm hoi này để có thể theo đuổi trong đời tôi khi trưởng thành, cái đã là giấc mơ thời thơ ấu. Tôi biết rằng nó là một đặc ân hiếm hoi, nhưng nếu ai đó có thể thật sự đạt được điều gì đó trong cuộc đời trưởng thành mà có ý nghĩa đến thế, thì nó đáng làm hơn bất cứ điều gì tôi có thể tưởng tượng.

    NOVA: Và bây giờ cuộc hành trình đã chấm dứt, chắc là có nỗi buồn nào đó?

    AW: Có một cảm giác buồn buồn, nhưng cùng lúc đó có một cảm giác lớn lao về sự thành tựu. Cũng có cảm giác tự do. Tôi đã bị ám ảnh bởi bài toán này khiến tôi phải nghĩ về nó mọi lúc -- sáng khi thức dậy, tối khi đi ngủ -- và điều đó tiếp diễn trong 8 năm trời. Thật là một thời gian dài để suy nghĩ về chỉ một thứ. Cuộc phiêu lưu đó giờ đã hết. Tâm trí tôi bây giờ đuợc nghỉ ngơi.

    --o0o--
    Nhắn tin cho tác giả
    Lê Phương @ 00:27 20/09/2009
    Số lượt xem: 727
    Số lượt thích: 0 người
     
    Gửi ý kiến

    Mathematics Newsletter